Publications
Published works utilising Resistomap services
List of publications
At the heart of our mission is a commitment to making a meaningful global impact in mitigating the spread of antibiotic resistance. We proudly support initiatives across diverse sectors and regions, ensuring that professionals and organisations everywhere can contribute to this vital cause. Over the years, we have collaborated on remarkable projects that leverage our services to drive forward knowledge and action in the field of environmental AMR.
To capture the breadth of this work and the difference it continues to make, we maintain a collection of published studies that have utilised our services.
Below, you’ll find our latest compilation of these impactful publications, showcasing the global scale and continued progress of our efforts.
Latest update: October 30, 2024
List of publications
Our service has been utilised by researchers all over the globe for various studies and fields of research. This list is updated occasionally as new information arises, so feel free to check back for the latest version.
If you have recently published a study using Resistomap's service, feel free to contact us about putting it on our list of supported publications.
- Robins, K., O'Donnell, G., Neumann, A., Schmidt, W., Hart, A., & Graham, D. W. (2024). Antimicrobial resistance in rural rivers: Comparative study of the Coquet (Northumberland) and Eden (Cumbria) River catchments. Science of The Total Environment, 928, 172348. https://doi.org/10.1016/j.scitotenv.2024.172348
- Magalhães, E. A., de Jesus, H. E., Pereira, P. H. F., Gomes, A. S., & dos Santos, H. F. (2024). Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. Environmental Pollution, 344, 123237. https://doi.org/10.1016/j.envpol.2023.123237
- Elbait, G. D., Daou, M., Abuoudah, M., Elmekawy, A., Hasan, S. W., Everett, D. B., & others. (2024). Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PLoS ONE, 19(4), e0298325. https://doi.org/10.1371/journal.pone.0298325
- Bagra, K., Kneis, D., Padfield, D., Szekeres, E., Teban-Man, A., Coman, C., Singh, G., Berendonk, T. U., & Klümper, U. (2024). Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. mSphere, 9(2). https://doi.org/10.1128/msphere.00573-23
- Zalewska, M., Błażejewska, A., Szadziul, M. et al. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. Environ Sci Pollut Res31, 30819–30835 (2024). https://doi.org/10.1007/s11356-024-33276-z
- Klümper, U., Gionchetta, G., Catão, E., Bellanger, X., Dielacher, I., Elena, A. X., Fang, P., Galazka, S., Goryluk-Salmonowicz, A., Kneis, D., Okoroafor, U., Radu, E., Szadziul, M., Szekeres, E., Teban-Man, A., Coman, C., Kreuzinger, N., Popowska, M., Vierheilig, J., ... Berendonk, T. U. (2024). Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Communications Biology, 7, Article 706. https://doi.org/10.1038/s42003-024-05368-7
- Itzhari, D., Shuai, W., Hartmann, E. M., & Ronen, Z. (2024). Heterogeneous antibiotic resistance gene removal impedes evaluation of constructed wetlands for effective greywater treatment. Antibiotics, 13(4), 315. https://doi.org/10.3390/antibiotics13040315
- Srathongneam, T., Sresung, M., Paisantham, P., Ruksakul, P., Singer, A. C., Sukchawalit, R., Satayavivad, J., Mongkolsuk, S., & Sirikanchana, K. (2024). High-throughput qPCR unveils shared antibiotic resistance genes in tropical wastewater and river water. Science of The Total Environment, 908, 167867. https://doi.org/10.1016/j.scitotenv.2023.167867
- Tavares, R. D. S., Fidalgo, C., Rodrigues, E. T., Tacão, M., & Henriques, I. (2024). Integron-associated genes are reliable indicators of antibiotic resistance in wastewater despite treatment- and seasonality-driven fluctuations. Water Research, 258, 121784. https://doi.org/10.1016/j.watres.2024.121784
- Knight, M. E., Webster, G., Perry, W. B., Baldwin, A., Rushton, L., Pass, D. A., Cross, G., Durance, I., Muziasari, W., Kille, P., Farkas, K., Weightman, A. J., & Jones, D. L. (2024). National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches. Water Research, 262, 121989. https://doi.org/10.1016/j.watres.2024.121989
- Rivadulla, M., Lois, M., Elena, A. X., Balboa, S., Suarez, S., Berendonk, T. U., Romalde, J. L., Garrido, J. M., & Omil, F. (2024). Occurrence and fate of CECs (OMPs, ARGs and pathogens) during decentralised treatment of black water and grey water. Science of The Total Environment, 915, 169863. https://doi.org/10.1016/j.scitotenv.2023.169863
- Tadić, Đ., Sauvêtre, A., Cerqueira, F., Lestremau, F., Ait-Mouheb, N., & Chiron, S. (2024). Partially saturated vertical surface flow constructed wetland for emerging contaminants and antibiotic resistance genes removal from wastewater: The effect of bioaugmentation with Trichoderma. Journal of Environmental Chemical Engineering, 12(2), 112128. https://doi.org/10.1016/j.jece.2024.112128
- Sompornpailin, D., Pulgerd, P., Sangsanont, J., Thayanukul, P., & Punyapalakul, P. (2024). Removal of antibiotics, bacterial toxicity, and occurrence of antibiotic resistance genes in secondary hospital effluents treated with granular activated carbon and the impact of preceding chlorination. Science of The Total Environment, 927, 172095. https://doi.org/10.1016/j.scitotenv.2024.172095
- Ijaz, U. Z., Ameer, A., Saleem, F., Gul, F., Keating, C., & Javed, S. (2024). Specialty grand challenge: How can we use integrative approaches to understand microbial community dynamics? Frontiers in Systems Biology, 4. https://doi.org/10.3389/fsysb.2024.1432791
- Watson, E., Hamilton, S., Silva, N., Moss, S., Watkins, C., Baily, J., Forster, T., Hall, A. J., & Dagleish, M. P. (2024). Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. Environmental Pollution, 349, 123936. https://doi.org/10.1016/j.envpol.2024.123936
- Sacristán-Soriano, O., Jarma, D., Sánchez, M. I., Romero, N., Alonso, E., Green, A. J., Sànchez-Melsió, A., Hortas, F., Balcázar, J. L., Peralta-Sánchez, J. M., & Borrego, C. M. (2024). Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. Science of The Total Environment, 914, 169946. https://doi.org/10.1016/j.scitotenv.2024.169946
- Jarma, D., Sacristán-Soriano, O., Borrego, C. M., Hortas, F., Peralta-Sánchez, J. M., Balcázar, J. L., Green, A. J., Alonso, E., Sánchez-Melsió, A., & Sánchez, M. I. (2024). Variability of faecal microbiota and antibiotic resistance genes in flocks of migratory gulls and comparison with the surrounding environment. Environmental Pollution, 359, 124563. https://doi.org/10.1016/j.envpol.2024.124563
- Girón-Guzmán, I., Sánchez-Alberola, S., Cuevas-Ferrando, E., Falcó, I., Díaz-Reolid, A., Puchades-Colera, P., Ballesteros, S., Pérez-Cataluña, A., Coll, J. M., Núñez, E., Fabra, M. J., López-Rubio, A., & Sánchez, G. (2024). Longitudinal study on the multifactorial public health risks associated with sewage reclamation. npj Clean Water, 7, Article 72. https://doi.org/10.1038/s41545-024-00282-3
- Samarra, A., Cabrera-Rubio, R., Martínez-Costa, C., & Collado, M. C. (2024). Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Annals of Clinical Microbiology and Antimicrobials, 23, Article 72. https://doi.org/10.1186/s12941-024-00725-z
- Sarekoski, A., Lipponen, A., Hokajärvi, A.-M., Räisänen, K., Tiwari, A., Paspaliari, D., Lehto, K.-M., Oikarinen, S., Heikinheimo, A., & Pitkänen, T. (2024). Simultaneous biomass concentration and subsequent quantitation of multiple infectious disease agents and antimicrobial resistance genes from community wastewater. Environment International, 191, 108973. https://doi.org/10.1016/j.envint.2024.108973
- Aljohani, A., Clarke, D., Byrne, M., & Fleming, G. (2024). The bacterial microbiome and resistome of house dust mites in Irish homes. Scientific Reports, 14, Article 19621. https://doi.org/10.1038/s41598-024-70686-y
- Goh, S. G., You, L., Ng, C., Tong, X., Mohapatra, S., Khor, W. C., Ong, H. M. G., Aung, K. T., & Gin, K. Y.-H. (2024). A multi-pronged approach to assessing antimicrobial resistance risks in coastal waters and aquaculture systems. Water Research, 266, 122353. https://doi.org/10.1016/j.watres.2024.122353
- Gyraitė, G., Kataržytė, M., Espinosa, R. P., Kalvaitienė, G., & Lastauskienė, E. (2024). Microbiome and resistome studies of the Lithuanian Baltic Sea coast and the Curonian Lagoon waters and sediments. Antibiotics, 13(11), 1013. https://doi.org/10.3390/antibiotics13111013
- Habibi, N., Uddin, S., Behbehani, M., Al-Sarawi, H. A., Kishk, M., Al-Zakri, W., AbdulRazzack, N., Shajan, A., & Zakir, F. (2023). A comparative assessment of high-throughput quantitative polymerase chain reaction versus shotgun metagenomic sequencing in sediment resistome profiling. Applied Sciences, 13(20), 11229. https://doi.org/10.3390/app132011229
- Habibi, N., Uddin, S., Behbehani, M., Kishk, M., Abdul Razzack, N., Zakir, F., & Shajan, A. (2023). Antibiotic resistance genes in aerosols: Baseline from Kuwait. International Journal of Molecular Sciences, 24(7), 6756. https://doi.org/10.3390/ijms24076756
- Do, T. T., Smyth, C., Crispie, F., Burgess, C., Brennan, F., & Walsh, F. (2023). Comparison of soil and grass microbiomes and resistomes reveals grass as a greater antimicrobial resistance reservoir than soil. Science of The Total Environment, 857(Part 1), 159179. https://doi.org/10.1016/j.scitotenv.2022.159179
- Tyrrell, C., Do, T. T., Leigh, R. J., Burgess, C. M., Brennan, F. P., & Walsh, F. (2023). Differential impact of swine, bovine and poultry manure on the microbiome and resistome of agricultural grassland. Science of The Total Environment, 886, 163926. https://doi.org/10.1016/j.scitotenv.2023.163926
- Szekeres, E., Baricz, A., Cristea, A., Levei, E. A., Stupar, Z., Brad, T., Kenesz, M., Moldovan, O. T., & Banciu, H. L. (2023). Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. Science of The Total Environment, 895, 165133. https://doi.org/10.1016/j.scitotenv.2023.165133
- Zadjelovic, V., Wright, R. J., Borsetto, C., & others. (2023). Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. Microbiome, 11, Article 225. https://doi.org/10.1186/s40168-023-01662-3
- Calderón-Franco, D., Corbera-Rubio, F., Cuesta-Sanz, M., Pieterse, B., de Ridder, D., van Loosdrecht, M. C. M., van Halem, D., Laureni, M., & Weissbrodt, D. G. (2023). Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. Water Research, 235, 119905. https://doi.org/10.1016/j.watres.2023.119905
- Jauregi, L., González, A., Garbisu, C., & Epelde, L. (2023). Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Scientific Reports, 13, Article 863. https://doi.org/10.1038/s41598-023-27871-3
- Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2023). Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Scientific Reports, 13, Article 11999. https://doi.org/10.1038/s41598-023-38024-w
- Santosaningsih, D., Fadriyana, A. P., David, N. I., & Ratridewi, I. (2023). Prevalence and abundance of beta-lactam resistance genes in hospital wastewater and Enterobacterales wastewater isolates. Tropical Medicine and Infectious Disease, 8(4), 193. https://doi.org/10.3390/tropicalmed8040193
- Gajdoš, S., Zuzáková, J., Pacholská, T., Kužel, V., Karpíšek, I., Karmann, C., Šturmová, R., Bindzar, J., Smrčková, Š., Sýkorová, Z., Srb, M., Šmejkalová, P., Kok, D., & Kouba, V. (2023). Synergistic removal of pharmaceuticals and antibiotic resistance from ultrafiltered WWTP effluent: Free-floating ARGs exceptionally susceptible to degradation. Journal of Environmental Management, 340, 117861. https://doi.org/10.1016/j.jenvman.2023.117861
- Błażejewska, A., Zalewska, M., Grudniak, A., & Popowska, M. (2022). A comprehensive study of the microbiome and resistome of chicken waste from intensive farms. Biomolecules, 12(8), 1132. https://doi.org/10.3390/biom12081132
- Muurinen, J., Muziasari, W. I., Hultman, J., Pärnänen, K., Narita, V., Lyra, C., Fadlillah, L. N., Rizki, L. P., Nurmi, W., Tiedje, J. M., Dwiprahasto, I., Hadi, P., & Virta, M. P. J. (2022). Antibiotic resistomes and microbiomes in the surface water along the Code River in Indonesia reflect drainage basin anthropogenic activities. Environmental Science & Technology, 56(21), 14994–15006. https://doi.org/10.1021/acs.est.2c01570
- Do, T. T., Nolan, S., Hayes, N., O’Flaherty, V., Burgess, C., Brennan, F., & Walsh, F. (2022). Data-based slurry treatment decision tree to minimise antibiotic resistance and pathogen transfer while maximising nutrient recycling. bioRxiv. https://doi.org/10.1101/2022.02.25.481976
- Dias, D., Fonseca, C., Mendo, S., & Caetano, T. (2022). First characterization of the faecal resistome of Eurasian otter (Lutra lutra), a sentinel species for aquatic environments. Chemosphere, 309(Part 1), 136644. https://doi.org/10.1016/j.chemosphere.2022.136644
- Kasuga, I., Nagasawa, K., Suzuki, M., Kurisu, F., & Furumai, H. (2022). High-throughput screening of antimicrobial resistance genes and their association with class 1 integrons in urban rivers in Japan. Frontiers in Environmental Science, 10, Article 825372. https://doi.org/10.3389/fenvs.2022.825372
- Dias, D., Fonseca, C., Caetano, T., & Mendo, S. (2022). Oh, deer! How worried should we be about the diversity and abundance of the faecal resistome of red deer? Science of The Total Environment, 825, 153831. https://doi.org/10.1016/j.scitotenv.2022.153831
- He, Z., Parra, B., Nesme, J., Smets, B. F., & Dechesne, A. (2022). Quantification and fate of plasmid-specific bacteriophages in wastewater: Beyond the F-coliphages. Water Research, 227, 119320. https://doi.org/10.1016/j.watres.2022.119320
- Dias, D., Hipólito, D., Figueiredo, A., Fonseca, C., Caetano, T., & Mendo, S. (2022). Unravelling the diversity and abundance of the red fox (Vulpes vulpes) faecal resistome and the phenotypic antibiotic susceptibility of indicator bacteria. Animals, 12(19), 2572. https://doi.org/10.3390/ani12192572
- Dias, D., Fonseca, C., Mendo, S., & Caetano, T. (2022). A closer look on the variety and abundance of the faecal resistome of wild boar. Environmental Pollution, 292(Part B), 118406. https://doi.org/10.1016/j.envpol.2021.118406
- Lai, F. Y., Muziasari, W., Virta, M., Wiberg, K., & Ahrens, L. (2021). Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis. Environmental Pollution, 287, 117651. https://doi.org/10.1016/j.envpol.2021.117651